Highly-ordered hybrids between organic semiconductors and MoS2 – Publication by A2 (Witte)

In a new publication in Physics Status Solidi Rapid Research Letters project A2 (Witte) reports on the fabrication of well-defined hybrids of organic semiconductors and transition metal-dichalcogenides (TMDCs).

The two-dimensional material graphene has garnered extreme interest due to its interesting electronic properties in combination with utmost structural stability despite merely nanometer thickness. Motivated by this prominent example, further two-dimensional materials have become the focus of today’s cutting-edge research. One important class of such materials are transition metal dichalcogenides such as MoS2, WS2 or MoSe2. Their interesting electronic properties have not only revealed novel physics but already enabled the fabrication of prototypical devices.

In their recent work, Tobias Breuer and Gregor Witte used such TMDC surfaces, in particular of MoS2, to fabricate crystalline, well-defined hybrid structures with organic semiconductors (OSCs), in themselve up-and-coming technologically relevant materials. Brought together, the characteristic advantages of both material classes can be combined to potentially fabricate novel synthetic materials with superior characteristics. The authors report on the successful fabrication of such hybrids combining MoS2 with the molecular donor and acceptor systems pentacene and perfluoropentacene. In particular, they observe that both materials are structurally compatible despite their strongly different shape symmetry and form
large crystalline islands on highly ordered MoS2 basal planes. Interestingly, the molecules arrange in such a fashion that the contact area at the interface between TMDC and organic semiconductor is maximized, hence allowing for an efficient coupling of both constituents. Surprisingly, the OSCs are even epitaxially aligned on the substrates.

A crucial aspect for the successful fabrication of these heterostructures is the structural quality of TMDC surfaces. In previous work, it has been shown that photoluminescence efficiency is strongly increased for MoS2 surfaces with significant defect density as compared to pristine surfaces. For the hybrid structures, the lateral dimensions of the crystalline OSC islands are reduced and the relative orientation of the molecules on the surface is inverted, hence leading to an upright molecular growth on defective MoS2 surfaces instead of a lying configuration on pristine
MoS2. Since the preparation of ideal, defect-free TMDC surfaces is challenging and commercially available TMDCs frequently have considerable defect densities, this aspect requires appropriate consideration. The achieved expertise on the preparation of such well-defined novel hybrid structures will enable the detailed investigation of their electronic and optical coupling mechanisms within further projects of SFB 1083.

Publication:

Tobias Breuer, Tobias Massmeyer, Alexander Mänz, Steffen Zoerb, Bernd Harbrecht, Gregor Witte
Structure of van der Waals bound Hybrids of Organic Semiconductors and Transition Metal Dichalcogenides: the Case of Acene Films on MoS2
Physica Status Solidi – Rapid Research Letters (2016).

Momentum space mapping of electron transfer processes in MoS2 – Publication by B6 (Höfer/Wallauer)

In a publication in Applied Physics Letters project B6 (Höfer) reports on a new experimental setup for time-resolved two-photon photoemission (2PPE). The method, which combines femtosecond pump-probe techniques with photoelectron spectroscopy, makes it possible to map the dynamics of electron transfer processes at surfaces and interfaces directly in momentum space.

The new experiment combines a high-harmonic generation (HHG) light source, developed and built in Marburg, with a state-of-the-art 3D hemispherical electron analyzer (VG Scienta DA30). The analyzer can measure electron energies as a function of both parallel momentum directions (kx and ky) without movement of the sample. The high-harmonic source gives access to the full 2D Brillouin zone whereas conventional 2PPE setups are restricted to electrons near the ? point.

The large parallel momenta, which become accessible with the new experiment, enable SFB 1083 to study electron dynamics at interfaces of many interesting new materials. Particularly, in the class of two-dimensional transition-metal dichalcogenides (TMDCs), most of the interesting electron dynamics take place at the boundary of the first Brillouin zone. Investigations of the intervalley scattering in the topmost layer of MoS2, a prototypical TMDC, demonstrate this capability. Electrons excited at the K-point are found to scatter to the Σ-point in less than 50 fs by directly mapping the electron population in k-space as a function of time.

The new experiment opens up the possibility to study charge transfer and exciton formation with 2PPE in a variety of systems, most prominently van-der-Waals heterostructures, which are a combination of different single-layer TMDCs. In these systems, upon excitation, charge transfer excitons can form. Their formation and relaxation pathways can now be examined by a direct mapping technique in momentum space.

Publication:

R. Wallauer, J. Reimann, N. Armbrust, J. Güdde, and U. Höfer
Intervalley scattering in MoS2 imaged by two-photon photoemission with a high-harmonic probe
Applied Physics Letters 109, 162102 (2016).

Prof. Echenique (GP1) receives Honorary Doctorate from Aalto University, Finland

We congratulate Prof. Dr. Pedro M. Echenique, PI of SFB-project GP1, on his honorary doctorate received from Aalto University, Finland.

In a ceremony on Oct.7th, Aalto University conferred an Honorary Doctorate in Technology on Pedro Miguel Echenique, Professor of the University of the Basque Country (UPV/EHU) and President of Donostia  international Physics Center (DIPC), together with another ten eminent persons in the fields of science, technology and society. The award, which is conferred every two years by Aalto University Schools of Technology, can look back on a tradition of more than 80 years, and among the recipients are renowned scientists, technologists and influencers in science and society with outstanding professional careers.
More details under Aalto University or DIPC-press release.