PI Seminar 2019 in Oberheimbach

As the first half of SFB 1083’s second funding period comes to a close it was time for its principal investigators to get together to discuss in depth their individual project’s progress and how interdisciplinary research and discussion across projects are developing.

The secluded setting in Oberheimbach provided the right framework for ample conversation in changing smaller and bigger groups and discussion of possible new research agendas for the third funding period of SFB 1083.

For details of the program please follow the link.

SFB 1083 in partnership with Chemikum Marburg supports Girls’ Day 2019

SFB 1083’s Ö-project closely cooperates with Chemikum Marburg e.V. by installing at its premises several new experiments and workshops providing hands-on insights into the SFB’s research objective and the study methods employed. In 2019, for a second time, the partnership supported Girls’ Day activities with dedicated offerings.

Girls’ Day 2019 with its 50 young (agegroup 10-16) female participants benefitted from these offerings, which included the application of acid-base-reactions, measuring thermal signatures of chemical reactions and electrical conductivity in various substances. The experiments provide insight into the central research aspect of SFB 1083: “What are the reactions taking place at the interface, that is the contact between two materials?”

“Girls’ Day allows us to showcase how researchers work. In interesting experiments and workshops we can entice enthusiasm for MINT-disciplines in female pupils”, state Prof. Stefanie Dehnen and Dr. Christof Wegscheid-Gerlach, director and co-director of Chemikum Marburg and principal investigators of SFB 1083’s Ö-project.

A special informatics-focused workshop, in cooperation with Michael Szabo (Fachdidaktik Informatik PUM/MLS), showcased how disciplines work together and how modern research needs detailed programming for optimal analytical results. The SFB’s Atomic Force Microscope (AFM), for example, needs a complex range of operational programming to realize its full potential. This was demonstrated using the Lego-model and it rapidly became obvious to the riveted audience how programming controls the instrument’s operation. 18 girls were then guided in developing their own little programs using the language scratch. At the end of the 3-hour workshop the young participants had all succeeded in letting their “dog run around the lake” and teasing out the impact of minor changes to their code.

See also a press release in German.

Contact

Dr. Christof Wegscheid-Gerlach
Chemikum Marburg
SFB 1083 project Ö
Tel.: 06421 28 25252
EMAIL

Organic monolayers can reduce contact resistances in organic electronics – Publication by A2 (Witte)

In a detailed study, Felix Widdascheck, Alrun Hauke and Gregor Witte from SFB-project A2 show how phthalocyanine monolayers can be used to control the work function of noble metal electrodes, both in single crystalline model systems and for real life polycrystalline electrodes.

The work function of bare metal surfaces (yellow) can be modified by a thin layer of phthalocyanines (blue) to reduce injection barriers in organic electronic devices. (Image: F. Widdascheck).

Work function tailoring by means of organic monolayers is one of several promising approaches to reducing the contact resistance at the interface between metal electrodes and organic semiconductors in organic electronics devices.

In their study Felix Widdascheck and coauthors used several polar and non-polar phthalocyanines to modify the work functions of noble metal electrodes. As a starting point, they performed a detailed STM and Kelvin probe analysis of the coverage-dependent work function changes of Au and Ag single crystal surfaces. The authors find that the work function changes strongly depend on both coverage and the type of phthalocyanine used as the contact primer. Their phenomenological description of the observed trends provides important groundwork for more detailed theoretical modeling of the processes taking place at the complex internal interface between metal, monolayer and organic semiconductor.

In a further step towards actual device applications, the authors then transferred their findings and the developed preparation protocols to polycrystalline electrodes, demonstrating that the same work function changes can be observed also on “real-life” electrodes. With the end user in mind, the team also tested the air stability of their contact primers, proving that a sacrificial phthalocyanine multilayer serves well to protect the highly ordered mono- and bilayer contact primers during air transfer and can be removed by thermal desorption afterwards.

Publication

F. Widdascheck, A.A. Hauke and G. Witte,
A Solvent-Free Solution: Vacuum-Deposited Organic Monolayers Modify Work Functions of Noble Metal Electrodes
Adv. Funct. Mater. (2019) DOI: 10.1002/adfm.201808385

See also press release in German.

Contact

Prof. Dr. Gregor Witte
Philipps-Universität Marburg
SFB 1083 project A2
Tel.: 06421 28 21384
EMAIL