Growth of extended DNTT fibers on metal substrates by suppression of step-induced nucleation – Publication by A2 (Witte)

In their study published in Nanoscale Horizons, Maximilan Dreher, Dayeon Kang, Tobias Breuer and Gregor Witte introduce and validate a new concept to suppress the defect-driven fiber nucleation at surface steps by selective blocking of the active step sites using small molecules, so that the formation of crystalline, organic fibers is only governed by the intrinsic epitaxial growth on ideal, defect-free surface regions.

DNTT fiber structures grown on Ag(111) substrates without (left) and with (right) pre-exposition of oxygen to the surface. The oxygen suppresses the DNTT molecules to adsorb at the step edges, which leads to straight, elongated and epitaxially aligned fibers. (Image: M. Dreher). Reproduced with permission from the Royal Society of Chemistry.

Due to their anisotropic optoelectronic properties, crystalline organic fibers constitute an interesting class of nanoscale materials with great potential for integration into future optoelectronic devices based on organic-inorganic hybrid systems. While chemical synthesis allows for flexible tailoring of electronic molecular properties, well-established structuring methods such as, e.g. lithography are hardly applicable to most molecular materials. Therefore, self-organization is an important alternative route for structuring molecular materials especially for organic/inorganic hybrid architectures. While molecular materials often form crystalline fibers, their length and orientation is, however, limited by surface defects such as steps of the supports that cannot be prevented even on very perfect, single crystalline substrates, hence drastically restricting their use in device applications.

In their study the authors analyzed the influence of surface step edges on the initial growth of fibers for the case of the high performing organic semi¬conductor dinaphthothienothiophene (DNTT) and developed a new concept to suppress the defect–driven fiber nucleation. Based on a comparison of the organic film growth on densely packed, flat noble metal surfaces and on a regularly stepped, vicinal surface, they first showed how substrate steps affect the azimuthal molecular orientation in the seed layer and also the subsequent fiber formation. In a next step they demonstrate that this parasitical step-induced fiber nucleation that occurs also on densely packed Ag(111) surfaces can be suppressed by first exposing the metal support to oxygen, or even briefly to ambient condition, which causes a selective saturation of the active step sites. They show that this not only leads to an exclusive growth of epitaxial DNTT fibers but also strongly increases the fiber size to several hundreds of microns. This novel approach is quite versatile and allows a distinct improvement of template assisted growth and thereby the quality of organic/inorganic hybrids.

Publication

M. Dreher, D. Kang, T. Breuer and G. Witte,
Growth of extended DNTT fibers on metal substrates by suppression of step-induced nucleation
Nanoscale Horizons (2019) DOI:10.1039/C9NH00422J

Poster Award
The paper’s first author Maximilian Dreher is currently a Master’s student within SFB-project A2. We congratulate him on receiving the prize for his poster on the above research which he presented at the Cecam Workshop on “Fabrication processes and molecular organization in organic thin films: Theory and simulation meet experiments” held in Lecco, Italy from July 17-20, 2019.

Contact

Prof. Dr. Gregor Witte
Philipps-Universität Marburg
SFB 1083 project A2
Tel.: 06421 28 21384
EMAIL

Lisa Pecher awarded dissertation prize of Philipps-Universität Marburg

Congratulations to Dr. Lisa Pecher, former PhD-student of the SFB in the Tonner group (Project A6), for being awarded the Kurt-Dehnicke prize of the Department of Chemistry for her outstanding PhD thesis finalized in 2017.

Semiconductor surfaces are the basis for microtechnology and major applications like photovoltaics. Improving their efficiency and applicability toward future demands on materials requires functionalization with suitable molecules. Fundamental research can help here to understand the interaction between molecules and surfaces.

Lisa Pecher brought significant progress to the understanding of how organic molecules interact with semiconductor surfaces. In her thesis titled “Adsorption Dynamics and Bonding Analysis of Organic Molecules on Silicon(001) Surfaces” – funded and supported by SFB 1083 – she combined static and dynamic quantum-chemical methods with insightful qualitative and quantitative analysis of the electronic structure in extended systems to provide a unique view on the interaction between adsorbates and surfaces. She developed new, efficient approaches to tackle the complex interplay of atomic and electronic effects that need to be treated accurately to derive new insights. Inspired by chemical bonding concepts successfully used in molecular chemistry, she revealed surprising parallels in the realm of surface chemistry. For example, she pointed out for the first time that a well-known reaction mechanism for organic chemistry –second-order nucleophilic substitution – can be found in the reaction of ether molecules with silicon surfaces. This was the key insight explaining the product distribution and published in the chemistry flagship journal Angewandte Chemie (link).

In a further step towards actual device applications, the authors then transferred their findings and the developed preparation protocols to polycrystalline electrodes, demonstrating that the same work function changes can be observed also on “real-life” electrodes. With the end user in mind, the team also tested the air stability of their contact primers, proving that a sacrificial phthalocyanine multilayer serves well to protect the highly ordered mono- and bilayer contact primers during air transfer and can be removed by thermal desorption afterwards.

This was just one of nine publications in major scientific journals – all of them as first author, two of them highlighted on the cover pages. She summarized these impressive scientific results in a review article which was highlighted by science writers and bloggers worldwide (see the SFB news item for more details).

More coverage of the prize-giving event is found here (in German).

Johannes Reimann awarded dissertation prize of Philipps-Universität Marburg

Congratulations to Dr. Johannes Reimann, doctoral student in SFB-project B6 (Höfer), for being awarded a prize by Philipps- Universität Marburg for his excellent dissertation presented in 2018.

In his thesis entitled “Charge carried dynamics and photocurrents in the Dirac cone of topological insulators” Johannes Reimann investigated a novel class of materials, topological insulators. These materials, discovered only a decade ago, are insulating in the volume, but conductive at their surfaces and at their interfaces with conventional materials.

In the framework of his thesis, Johannes Reimann advanced the development of time- and angle-resolved photoelectron spectroscopy within the group of Prof. Höfer. In particular, his work is the first to combine this powerful technique with Terahertz excitation and to achieve subcycle time resolution. In collaboration with the group of Prof. Rupert Huber in Regensburg, he succeeded in taking band structure movies of electrical currents carried by Dirac electrons as they are driven by an intense THz wave. First results were published in Nature in September 2018 (see also SFB news, university press release.

The results of Johannes Reimann’s work hold great promise to realize new lightwave-driven electronics, a concept to increase the clock rates of conventional semiconductor devices by a factor of 1000 and more. Moreover, the successful demonstration of the combination of intense THz pulses as pump and angle-resolved photoelectron spectroscopy (ARPES) as probe, has triggered worldwide experimental efforts to take advantage of THz-APRES for time-resolved investigation of a variety of solids, surfaces and interfaces.

See here for details of the event.