Imagefilm porträtiert Forschung an inneren Grenzflächen

Video: Till Schürmann. German Video Clip.

Der neue Film des SFB 1083 nimmt den interessierten Laien mit auf eine Reise hinunter zur atomaren Skala und will ihm zeigen, wie die aktuelle Spitzenforschung dort im Bereich der Grenzflächen voranschreitet.

Das 6-minütige Video ist kein anspruchsvoller Lehrfilm, vielmehr wirkt es wie Wissenschafts-Science-Fiction direkt aus dem Kino, mit Kamerafahrten bis in den Nanometerbereich, mit Flügen durch leuchtende Moleküle, mit exotischen Exzitonen und raumfüllenden Laser-Apparaturen. Sehr eindrücklich auch die Musik, eigens für diesen Film wurden „Die Planeten“ von Gustav Holst (1874-1934) neu arrangiert.

Warum Grenzflächen?

„In unserer modernen Welt werden gewaltige Mengen an Daten übertragen,“ erläutert Prof. Ulrich Höfer, der Initiator und derzeitige Sprecher des SFB, „und Jahr für Jahr werden es mehr. Die ständige Miniaturisierung erlaubt uns, diese Datenmenge immer schneller und effizienter zu verarbeiten. Aber je kleiner die Bauteile werden, desto stärker tritt in den Vordergrund, wo auf der atomaren Skala die Information gesteuert wird: Die innere Grenzfläche zwischen zwei Materialien. Wer hier Fortschritte erzielen kann, setzt die Maßstäbe für die Welt von morgen.“

Der Film zeigt, dass Grenzflächen noch ganz andere Chancen bieten: Verbindungen von Elektronik und Organik versprechen völlig neue Möglichkeiten der Informationsverarbeitung, Nanometer-kleine Laser überbrücken immer weitere Strecken, und Solarzellen mit organischen Kristallen könnten unsere Energieversorgung auf ein neues Level heben. Oder mit den Worten von Prof. Stefanie Dehnen von der Uni Marburg: „Man möchte als Wissenschaftler immer Dinge entdecken und weiterentwickeln, die letztlich der Welt helfen können.“

Prof. Michael Dürr aus Gießen erklärt den hohen Anspruch des Film-Projekts: „Wir hatten den Ehrgeiz, die atomaren Prozesse schöner – und auch exakter – darzustellen, als man das bisher in dieser Art gesehen hat. Und dabei immer auch verständlich zu bleiben.“

Realisiert hat den Film der Gießener Filmemacher Till Schürmann. „Es macht ja immer viel Spaß, Wissenschaft so darzustellen, dass man auch die Begeisterung spürt, die die Wissenschaftler haben. Die sitzen ja nicht nur in ihren Laboren, die erleben immer wieder Nervenkitzel, die spüren Faszination und Freude genauso wie wir normalen Menschen“, erzählt er über seine Motivation. „Nur dass die Welt, in der sie sich bewegen, die Apparate, die Ergebnisse, dass die uns als pure Science Fiction erscheinen.“

Science Fiction, die durch die unermüdliche Arbeit der Forscher immer weniger – Fiction sein wird. Und die uns eines Tages vielleicht ganz selbstverständlich umgeben wird.

Was ist ein Sonderforschungsbereich?

Sonderforschungsbereiche sind langfristige Projekte aus der Grundlagenforschung, die von der Deutschen Forschungsgemeinschaft (DFG) aus Mitteln des Bundes und der Ländern gefördert werden.

Prof. Höfer erläutert das Besondere des Marburger Sonderforschungsbereichs 1083: “Das Verständnis innerer Grenzflächen gilt schon seit vielen Jahren als eines der Gebiete der Festkörperphysik mit dem drängendsten Forschungsbedarf. So sagte Herbert Kroemer bereits im Jahr 2000 bei seiner Nobelpreis-Vorlesung: ‘Die Grenzfläche ist das Bauteil’. Unser SFB überträgt dazu Methoden der Oberflächenphysik und Oberflächenchemie auf die Untersuchung von Grenzflächen. Durch diesen Ansatz und die Fokussierung auf Modellsysteme, die auf der atomaren Skala gut charakterisiert sind, haben wir uns als Verbund ein Alleinstellungsmerkmal erarbeitet. Aber auch bei der Entwicklung und Weiterentwickelten optischer Spektroskopien sind wir weltweit ganz vorne mit dabei.

Neben der Uni Marburg sind im SFB 1083 „Struktur und Dynamik innerer Grenzflächen“ noch die Uni Gießen, das Forschungszentrum Jülich und die Uni Münster mit an Bord. Insgesamt arbeiten hier 80 Wissenschaftler aus den unterschiedlichsten Disziplinen zusammen. Die jährlichen DFG-Fördergelder belaufen sich auf etwa 2.5 Millionen Euro.

„Der Film zeigt natürlich nur einen winzigen Ausschnitt unserer Aktivitäten“, sagt Höfer. „Bei insgesamt 18 Teilprojekten und 24 Professoren haben Sie eine ungeheure Bandbreite an Interessen und individuellen Forschungsschwerpunkten. Aber durch die Fokussierung auf die Grenzfläche erleben wir hier auch eine gewaltige gegenseitige Inspiration. So etwas ist eben nur durch einen Sonderforschungsbereich möglich, durch die langfristige Orientierung des gesamten Projekts.“

Video

Struktur und Dynamik innerer Grenzflächen – YouTube

Kontakt

Sonderforschungsbereich 1083
Philipps-Universität Marburg
Renthof 5
35043 Marburg
Tel.: 06421 28-24223
EMAIL  
    Till Schürmann
Menzelstr. 28
35396 Gießen
Tel.: 0641 2091852
www.till-schuermann.de

Ulrich Höfer is Plenary Speaker at DPG Spring Meeting, 2020

SFB 1083 spokesman Ulrich Höfer to give a plenary talk at the Annual Spring Meeting of the German Physical Society (DPG) in Dresden.

Ulrich Höfer, from the Department of Physics at Philipps-Universität Marburg, was invited by the Condensed Matter Section of the German Physical Society to give a plenary talk at this year’s Annual Spring Meeting of the German Physical Society (DPG) in Dresden March 15th-20th 2020. The title of his talk will be “THz-ARPES band structure movies of Dirac surface currents”.

The DPG-spring meeting in Dresden is Europe’s largest physics congress with more than 6000 participants in the past years.

Interfacial synthesis of novel phthalocyanine dyes – Publication by A4 (Gottfried), A6 (Tonner) & A7 (Sundermeyer)

In their study published in Nature Communications, the authors from three SFB-projects with expertise in interface chemistry, organometallic synthesis, and theoretical chemistry, jointly publish their research into template-controlled interfacial synthesis of unprecedented extended phthalocyanine dyes.

Interfacial template approach: control over the topology of the reaction products is achieved by using differently-sized metal templates in 2D confinement. (after publication-Fig. 1) Copyright by CC-BY 4.0.

Phthalocyanines possess unique optical and electronic properties and thus are widely used in (opto)electronic devices, coatings, photodynamic therapy, etc. Extending the π-conjugation of phthalocyanine dyes, while synthetically challenging, has the potential to produce desirable new molecular materials.

Here, Dr. Qitang Fan and coworkers use a templated interface approach to synthesize several extended phthalocyanine derivatives from the same building block, including an unprecedented lanthanide superphthalocyanine and an open-chain polycyanine (fig. left). The former represents the first superphthalocyanine without uranium center, while the latter provides an intriguing model for an organic semiconducting polymer with an absorption band in the visible range. Detailed study of these new materials by scanning tunneling microscopy, photoemission spectroscopy, and density functional theory calculations (fig. below), reveal their chemical structure and mechanical as well as electronic properties.

Orbitals: Lowest unoccupied molecular orbitals of Fe-NPc and Gd-SNPc, lowest unoccupied crystal orbital of polycyanine, from density-functional theory calculation. Copyright by CC-BY 4.0

See also natureresearch’s “Behind The Paper”-contribution by Michael Gottfried on “Synthesis in flatland: rings and chains grown on surfaces”.

Publication

Q. Fan, J.-N. Luy, M. Liebold, K. Greulich, M. Zugermeier, J. Sundermeyer, R. Tonner, J.M. Gottfried, Template‐controlled on‐surface synthesis of a lanthanide supernaphthalocyanine and its open‐chain polycyanine counterpart, Nature Commun. 10 (2019) 5049 DOI:s41467-019-13030-7

Contact

Prof. Dr. Michael Gottfried
Philipps-Universität Marburg
SFB 1083 project A4
Tel.: 06421 28 22541
EMAIL