Van der Waals bound Organic Semiconductor/2D-Material Hybrid Heterosystems: Intrinsic Epitaxial Alignment of Perfluoropentacene Films on Transition Metal Dichalcogenides – Publication by A2 (Witte)

In a new publication in Chemistry of Materials project A2 (Witte) reports on the epitaxial alignment of crystalline perfluoropentacene (PFP) films on various transition metal dichalcogenides (TMDCs). This van der Waals epitaxy results in characteristic twist angles between substrate and film lattices, which are of particular interest for the optoelectronic coupling at the interface.

Epitaxial alignment of crystalline PFP films on the basal plane of MoS2 and WSe2 (Image: M. Dreher). Reprinted with permission from 2020, 32, 20, 9034-9043. Copyright 2020 American Chemical Society.

Two-dimensional (2D) materials are a subject of current research, because their different electronic properties as well as the ability to prepare films as thin as one mono­layer opens up the prospect of producing new nanoscale heterostructures and devices. Of particular interest is the stacking of such films with controlled twist angle as it critically affects the electronic interface properties. A promising extension is the combination of TMDCs with organic semi­conductors (OSC), as it allows to combine the high charge carrier mobility of the TMDCs with the OSC’s large photo-absorption cross section, which is beneficial for photovoltaic applications.

Using the example of the prototypical OSC PFP, Maximilian Dreher and coworkers analyzed in the present study the epitaxial alignment of the crystalline molecular adlayers on the basal plane of different TMDCs (MoSe2, WSe2, MoS2 MoTe2). By utilizing the optical anisotropy of PFP films, their azimuthal alignment was analyzed by means of polarization resolved reflection anisotropy. This sensitive and non-invasive method allows to characterize the epitaxial alignment even for thin films of few nanometers. The analysis yielded specific twist angles of the crystalline adlayer domains with respect to the substrate lattice, which are characteristic for the individual material combinations. Notably, the observed epitaxial order is not caused by any higher-order commensurability between substrate and adlayer, where individual molecules are bound to locally favorable adsorption sites. Instead, it results from an energetically favored alignment of the entire crystalline adlayer on the substrate surface and can be rationalized as an on-line coincidence. This peculiar epitaxy could also be theoretically modelled using a modified scheme of projection of real-space adlayer lattice points onto the substrate unit cell. In addition, the extreme sensitivity of this van der Waals epitaxy on small lattice distortions was demonstrated by films grown at slightly higher substrate temperature. Although raising the growth temperature by about 30 K yields only a small increase of the lattice constants of the PFP film due to thermal expansion in the order of a few hundredths of Angstrom, while the more rigid TMDC surface lattice is hardly affected, it causes a distinct change of the twist angle of more than 20°. The achieved epitaxial alignment and control of twist angles is an important mile stone and will be used in future studies on the optoelectronic adlayer-substrate coupling in OSC/TMDC hybrid systems within the SFB 1083.

Publication

Maximilian Dreher, Darius Günder, Steffen Zörb, and Gregor Witte
Van der Waals Bound Organic Semiconductor/2D-Material Hybrid Heterosystems: Intrinsic Epitaxial Alignment of Perfluoropentacene Films on Transition Metal Dichalcogenides
Chem. Mater. (2020) DOI:10.1021/acs.chemmater.0c03482

Contact

Prof. Dr. Gregor Witte
Philipps-Universität Marburg
SFB 1083 project A2
Tel.: 06421 28-21384
EMAIL

David Peter Krug (Project A5) receives poster award at M&M 2020

David Peter Krug, PhD-student in SFB-project A5 of Prof. Dr. Kerstin Volz, was awarded with the poster prize at the virtual Microscopy & Microanalysis Meeting 2020.

In his online presentation, David Peter Krug gave new insights into the growth of GaP nanowires and the mechanism of the kink formation showing different predominant angles. These kinks point towards the existence of twinned interfaces in the nanowires. He studied the growth process of the nanowires by in-situ (scanning) transmission electron microscopy ((S)TEM) in gas environmental cells, in which the reaction conditions are comparable to the widely used metal organic vapor phase epitaxy (MOVPE). He brilliantly made use of the opportunities of an online presentation and implemented a live study at the (S)TEM.

The Microscopy & Microanalysis Meeting (M&M) is an annual meeting in the USA covering the research fields of microscopy, imaging, and compositional analysis. Due to the current Corona pandemic, the meeting was held online.

Poster “Formation mechanisms for the dominant kinks in GaP nanowires in an in-situ (S)TEM gas cell holder” by D. Krug, M. Widemann, F. Gruber, A. Beyer, and K. Volz (Materials Sciences Center and Faculty of Physics, Philipps-Universität Marburg) – Microscopy & Microanalysis Meeting 2020, August 04 – 07, 2020, virtual meeting.

Momentum-resolved charge transfer between two TMDC layers – Publication by B6 (Höfer/Wallauer) and A13 (Rohlfing)

How fast is the charge transfer between two layers of transition metal dichalcogenides (TMDCs) and where does it take place in momentum space? Two-photon photoemission using high-harmonic probe pulses can answer these questions as Wallauer and coworkers demonstrate for the topmost layers of MoS2.

Copyright 2020 by the American Physical Society.

The experiment of Wallauer and coworkers exploits both the high surface sensititivity of photoelectron spectroscopy and the fact, that the bandgap of the topmost layer of TMDCs is enlarged due to reduced screening. By tuning pump pulses below the top-layer gap at K, it is thus possible to excite electrons in deeper layers and probe only the topmost layer. The experiment then images the population dynamics of initially unoccupied electronic states and the charge transfer directly in momentum space with femtosecond time resolution. The results show that the electron transfer between the topmost layers of a 2H-MoS2-crystal, takes place at Σ and proceeds on a timescale of less than 20 fs.

GW-based tight binding calculations by Marauhn and Rohlfing support the experimental findings and explain why the electron transfer takes place at Σ. The GW-based tight-binding calculations not only confirm that the band gap in the surface layer is indeed considerably larger than in deeper layers. They reveal that the coupling between surface and deeper layers is strongly momentum-dependent throughout the Brillouin zone. The coupling is found to be particularly strong at at the conduction-band minimum at Σ, which explains the ultrafast interlayer charge transfer observed in the experiment at this location.

The publication is an “Editor’s Suggestion” in the September 2020 issue of Physical Preview B.

Publication
R. Wallauer, P. Marauhn, J. Reimann, S. Zoerb, F. Kraus, J. Güdde, M. Rohlfing, and U. Höfer

Momentum-resolved observation of ultrafast interlayer charge transfer between the topmost layers of MoS2
Physical Review B 102, 125417 (2020)

Contact

Dr. Robert Wallauer

Philipps-Universität Marburg
SFB 1083 subproject B6
https://internal-interfaces.de/projects/B6
Phone: +49 6421 28-21406
EMAIL

Prof. Dr. Michael Rohlfing
Westfälische Wilhelms-Universität Münster
SFB 1083 subproject A13
https://internal-interfaces.de/projects/A13
Phone: +49 251 83-36340